SEMESTER I & II

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: I	PCPHG20	Practical I:	Practical	Core	3	4	100
& II		General					
		Experiments					

PCPHG20 - PRACTICAL - I: GENERAL EXPERIMENTS

Course Objectives

- 1. To understand the concepts and principles behind in experimental physics.
- 2. To teach the students to measure the electrical, mechanical, thermal and magnetic properties of materials.
- 3. Students are trained to handle advanced sophisticated equipments and analyze the data.

Course Outcomes (CO)

The learners will be able to

- 1. Measure electrical, magnetic and thermo-dynamical properties of solids.
- 2. Measure the thickness of glass plate (mechanical property) by using cornu's method
- 3. To find the wavelength of different colors through solar, mercury and hydrogen spectrum.
- 4. Calculate the acceptance angle and light gathering capability and attenuation properties of optical fiber and find out the Viscosity, specific rotary power and polarizability of different liquids through various experiments.
- 5. Develop the skills to take an accurate reading and analyze the results of experiments and to solve problems while handling with analytical instruments.

СО	PSO							
	1	2	3	4	5	6		
CO1	Н	Н	L	Н	Н	Н		
CO2	Н	Н	L	Μ	L	Н		
CO3	Н	Н	М	М	М	Н		
CO4	Н	Н	М	Н	М	Н		
CO5	Н	Н	L	М	Н	Н		

СО	РО							
	1	2	3	4	5	6		
CO1	Н	М	Н	Η	М	Н		
CO2	М	Н	Н	М	М	М		
CO3	М	Н	М	Η	Н	Н		
CO4	Н	М	Н	Μ	Н	М		
CO5	М	Н	Н	Μ	М	Н		

Course Syllabus

(Any 15 experiments)

- 1. Cornu's method Determination of Young's modulus of the material beam by elliptical fringes.
- 2. Cornu's method Determination of Young's modulus of the material beam by hyperbolic fringes.
- 3. Determination of Stefan's constant.
- 4. Band gap energy using point contact diode (Ge and Si)
- 5. Hartmann's formula Determination of wavelength of spectral lines in mercury spectrum.
- 6. Determination of Rydberg's constant Hydrogen and Neon spectrum.
- 7. Solar spectrum Hartmann's interpolation formula.
- 8. Co-efficient of linear expansion Air wedge method.
- 9. Viscosity of liquid Meyer's disc.
- 10. F.P.Etalon- using Spectrometer.
- 11. Specific charge of an electron –Magnetron method.
- 12. Energy bandgap of a Semiconductor Four Probe method (as a function of temperature).
- 13. Edser and Butler fringes Thickness of air film.
- 14. Spectrometer Charge of an electron.
- 15. Spectrometer Polarisability of liquids by finding the refractive indices at different wavelengths.
- 16. Permittivity of a liquid using RFO.
- 17. B-H loop using Anchor ring.
- 18. Determination of strain hardening co-efficient.
- 19. Determination of Audio frequencies Bridge method.
- 20. Specific heat of a liquid Ferguson's method.
- 21. Measurement of Numerical aperture (NA) of a telecommunication graded index optic fiber (for different length of fibers).
- 22. Fiber attenuation of the given optical fiber (between different lengths of fibers).
- 23. Biprism Wavelength of monochromatic source using Spectrometer.
- 24. Determination of specific rotatory power of a liquid using polarimeter.
- 25. Compressibility of a liquid using ultrasonic interferometer.
- 26. Lasers: study of laser beam parameters.

SEMESTER I & II

PCPHH20 - ELECTRONICS LAB

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: I	PCPHH20	Electronics Lab	Lab	Core	3	4	100
& II							

Course Objectives

- 1. Students will learn and understand the Basics of digital electronics.
- 2. To analyze logic processes and implement logical operations using combinational logic circuits.
- 3. To understand concepts of sequential circuits and to analyze sequential systems.
- 4. To analyze the different RC and LC oscillator circuits to determine the frequency of oscillation

Course Outcomes (CO)

The learners will be able to

- 1. Identify the various digital ICs and understand their operation.
- 2. Develop a digital logic and apply it to solve real life problems.
- 3. Analyze, design and implement combinational logic circuits.
- 4. Analyze, design and implement sequential logic circuits.
- 5. Design the different oscillator circuits for various frequencies.

СО	PSO							
	1	2	3	4	5	6		
CO1	Н	М	М	Н	М	М		
CO2	Н	М	М	Н	Н	Н		
CO3	Н	L	Н	Μ	L	М		
CO4	Н	L	Н	Μ	М	Н		
CO5	Н	L	Н	М	L	М		

СО	РО							
	1	2	3	4	5	6		
CO1	Н	Н	Н	Н	М	Н		
CO2	Н	Н	Н	Н	М	Н		
CO3	Н	Н	Н	Н	М	Н		
CO4	Н	М	Н	Н	Н	Н		
CO5	М	М	М	Μ	М	Н		

(Low - L, Medium – M, High - H)

Course Syllabus

(Any 18 experiments)

List of experiments (K1 - K6):

- 1. V-I Characteristics of SCR and TRIAC.
- 2. Study of Rectifiers using C, L-C and Pi filters.
- 3. Study of Voltage Current characteristics of UJT & UJT as a Relaxation Oscillator.
- 4. FET as amplifier frequency response, input impedance and output impedance.
- 5. Study of V-I Characteristics of J-FET as a VVR (Voltage Variable Resistor).
- 6. Study of V-I Characteristics of MOSFET.
- 7. Op-amp Voltage follower (Inverting) summing, difference, average amplifier- differentiator and integrator.
- 8. Op-amp Solving simultaneous equations.
- 9. Op-amp Design of square wave generator, triangular wave generator and saw tooth wave generator.
- 10. Op-amp 4 bit D/A converter Binary Weighted Resistor method and R-2R ladder method
- 11. Op-amp Design of active Low pass, High pass, Band Pass and band rejector filter.
- 12. Op-amp Study of attenuation characteristics and design of Phase Shift Oscillator.
- 13. Op-amp Study of attenuation characteristics and design of Wien Bridge Oscillator.
- 14. IC 555 Construction of Monostable Multivibrator, Frequency Divider
- 15. IC 555 -Design of Schmitt Trigger and hysteresis.
- 16. IC 555 Construction of Astablemultivibrator and Voltage controlled Oscillator
- 17. Design of Synchronous and Asynchronous Counters using IC-7476/7473.
- 18. Construction of 4 bit Shift Register Ring Counter and Johnson Counter IC7476
- 19. Study of i) Multiplexer and using IC 74150
 - ii) De-Multiplexer using IC 74154
- 20. Arithmetic operations (Adder/Subtractor) Using IC 7483.
- 21. Modulus counter using IC7490 and display using IC7447.
- 22. Phase locked loops using IC 555.
- 23. Binary adder abdSubtractor using EX-OR and NAND gates.

SEMESTER IV

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: IV	PCPHO20	Practical III:	Practical	Core	4	4	100
		Advanced					
		General					
		Experiments					

PCPHO20- PRACTICAL III: ADVANCED GENERAL EXPERIMENTS

Course Objectives

1. To provide the student hands-on experiences to conduct advanced general experiments in laboratory in lieu with the theory taught in the class.

Course Outcomes (CO)

The learners will be able to

- 1. Interpret and appreciate the advanced concepts in physics.
- 2. Use scientific equipment for analysis and data acquisition.
- 3. Analyse the properties (electric, magnetic, nuclear and dielectric) of solids/liquids.
- 4. Apply acquired knowledge to the analysis of experimental data.
- 5. Get exposure to work environment at research level and motivation for a lifelong learning.

CLO	PSO							
	1	2	3	4	5	6		
CLO1	Н	L	Н	L	Н	Н		
CLO2	М	Н	L	Μ	Н	Н		
CLO3	Н	Н	Н	Μ	Н	Н		
CLO4	Н	М	Н	L	Н	Н		
CLO5	L	М	L	L	Н	Н		

CLO	РО							
	1	2	3	4	5	6		
CLO1	Н	Н	Н	Н	Н	Н		
CLO2	Н	Н	М	М	Н	Н		
CLO3	Н	Н	Н	Μ	Н	Н		
CLO4	Н	М	Н	М	Н	Н		
CLO5	Н	Н	Н	Н	Н	Н		

(Low - L, Medium – M, High - H)

Course Syllabus

(Any 15 experiments) (K1 - K6)

- 1. G.M. Counter characteristics, Inverse square law.
- 2. G.M. Counter Absorption co-efficient.
- 3. Determination of Carrier Concentration Hall Effect.
- 4. Determination of Volume Susceptibility of a liquid by Quincke's method.
- 5. Determination of Mass Susceptibility of a liquid by Guoy's method.
- 6. Michelson Interferometer -Wavelength and separation of wavelengths.
- 7. Michelson Interferometer Thickness of mica sheet.
- 8. F.P. Etalon using Michelson set up.
- 9. Determination of Wave length of Laser Beam.
- 10. Ultrasonic Interferometer Velocity and Compressibility of a liquid.
- 11. Ultrasonic Diffraction Velocity and Compressibility of a liquid.
- 12. Determination of Planck's constant.
- 13. B-H curve using CRO.
- 14. Salt Analysis using Spectrograph CDS
- 15. Dielectric constant of liquids and solids by capacitance method.
- 16. Determination of coefficient of coupling by AC bridge method.
- 17. Impedance measurement using LCR bridge.
- 18. Four probe method Determination of conductivity of thin films.
- 19. Determination of dielectric loss using CRO.
- 20. Laser diode characteristics.